References

1. K.-D. Gundermann and F. McCapra, Chemiluminescence in Organic Chemistry, Springer-Verlag, Berlin, 1987.
2. L. J. Kricka and P. E. Stanley, Bioluminescence and Chemiluminescence Literature, J. Biolumin. Chemilumin., 11 (1996) 271-288.
3. I. Weeks, Chemiluminescence Immunoassay, Elsevier, New York, 1992.
4. J. W. Birks (ed.), Chemiluminescence and Photochemical Reaction Detection in Chromatography, VCH, New York, 1989.
5. A. K. Campbell, Chemiluminescence: Principles and Applications in Biology and Medicine, VCH, New York, 1988.
6. M. A. DeLuca, M. A. and W. D. McElroy (eds.), Bioluminescence and Chemiluminescence. Part B, Academic Press, Orlando, FL, 1986.
7. J. G. Burr, Chemi- and Bioluminescence, Marcel Dekker, New York, 1985.
8. W. Adam and G. Cilento (eds.), Chemical and Biological Generation of Excited States, Academic Press, New York, 1982.
9. M. A. DeLuce, Bioluminescence and Chemiluminescence, Methods in Enzymology, LVII, Academic Press, New York, 1978.
10. J. Cepas, M. Silva, and D. Pérez-Bendito, Integrated Derivatization-Chemiluminescence Detection System for the Determination of ß-carboline Alkaloids by High-Performance Liquid Chromatography, J. Chromatogr. A., 749 (1996) 73-80.
11. J. Ishida, T. Yakabe, H. Nohta, and M. Yamaguchi, 6-Aminomethylphthalhydrazide as a highly sensitive chemiluminescence derivatization reagent for 5-hydroxyindoles in liquid chromatography, Anal. Chim. Acta, 346 (1997) 175-181.
12. A. M. Garcia Campãna, W. R. G. Baeyens, and Y. Zhao, Chemiluminescence Detection in Capillary Electrophoresis, Anal. Chem. 69, (1997) 83A-88A.
13. S. -Y. Liao and C.-W. Whang, Indirect chemiluminescence detection of amino acids separated by capillary electrophoresis, J. Chromatogr. A., 736 (1997) 247-254.
14. Y. -T. Lee and C.-W. Whang, Off-column chemiluminescence detection in capillary electrophoresis, J. Chromatogr. A., 771 (1997) 379-384.
15. R. L. Shearer, Development of flameless sulfur chemiluminescence detection: application to gas chromatography, Anal. Chem., 64 (1992) 2192-2196.
16. B. Chawla, Speciation of nitrogen compounds in gasoline and diesel range process streams by capillary column gas chromatography with chemiluminescence detection, J. Chromatogr. Sci., 35 (1997) 97-104.
17. R. L. Benner and D. H. Stedman, Field evaluation of the sulfur chemiluminescence detector, Environ. Sci. Technol., 24 (1990) 1592-1596.
18. R. L. Benner and D. H. Stedman, Chemical mechanism and efficiency of the sulfur chemiluminescence detector, Appl. Spectrosc., 48 (1994) 848-851.
19. R. L. Shearer, E. B. Poole, and J. B. Nowalk, Application of gas chromatography and flameless sulfur chemiluminescence detection to the analysis of petroleum products, J. Chromatogr. Sci., 31 (1993) 82-87.
20. H. R. Martin and R. J. Glinski, Chemiluminescence from sulfur compounds in novel flame and discharge system: proof of sulfur dioxide as the emitter in the new sulfur chemiluminescence detector, Appl. Spectrosc., 46 (1992) 948-952.
21. M. Nedjma and A. Maujean, Improved chromatographic analysis of volatile sulfur compounds by the static headspace technique on water-alcohol solutions and brandies with chemiluminescence detection, J. Chromatogr. A, 704 (1995) 495-502.
22. S. E. Eckert-Tilotta, S. B. Hawthorne, and D. J. Miller, Comparison of commercially available atomic emission and chemiluminescence detectors for sulfur-selective gas chromatographic detection, J. Chromatogr., 591 (1992) 313-323.
23. S. W. Kubala, D. N. Campbell, and F. P. DiSanzo, Need Total Sulfur Content? Use Chemiluminescence, InTech, 43, (1996) 71-74.
24. X. Xu, L. M. McDonald, C. W. McGowan, and R. J. Glinski, Examination of Sulfur Forms in Coal by Direct Pyrolysis and Chemiluminescence Detection, Fuel, 74 (1995) 1499-1504.
25. T. Aoki and M. Wakabayashi, Simultaneous flow injection determination of nitrate and nitrate in water by gas-phase chemiluminescence, Anal. Chim. Acta, 308 (1995) 308-312.
26. H. Shi, L. T. Taylor, and E. M. Fujinari, Chemiluminescence nitrogen detection for packed-column supercritical fluid chromatography with methanol modified carbon dioxide, J. Chromatogr. A, 757 (1997) 183-191.
27. W. T. Foreman, C. L. Shellum, and J. W. Birks, Supercritical fluid chromatography with sulfur chemiluminescence detection, J. Chromatogr., 465 (1989) 23-38.
28. W. F. Sye, Z. X. Zhao, and M. L. Lee, Comparative Application of sulfur chemiluminescence detection in gas and supercritical fluid chromatography, Chromatographia, 33 (1992) 507-513.
29. R. L. Shearer and R. J. Skelton, Supercritical fluid chromatography of petroleum products using flameless sulfur chemiluminescence detection, J. High Res. Chromatogr., 17 (1994) 251-254.
30. B. W. Sandman and M. L. Grayeski, Peroxylate chemiluminescence detection with packed column supercritical fluid chromatography, Chromatographia, 38 (1994) 163-176.
31. P. Evelson, C. P. Ordóñez, S. Llesuy, and A. Boveris, Oxidative stress and in vivo Chemiluminescence in mouse skin exposed to uva radiation, J. Photochem. Photobiol. B: Biol., 38 (1997) 215-219.
32. E. M. de Cavanagh, C. G. Fraga, L. Ferder, and F. Inserra, Enalapril and captopril enhance antioxidant defenses in mouse tissues, Am. J. Physiol., 272 (1997) R514-8.
33. M. Demasi, C. A. Costa, C. Pascual, S. Llesuy and E. J. Bechara, Oxidative tissue response promoted by 5-aminolevulinic acid promptly induces the increase of plasma antioxidant capacity, Free Radic. Res., 26 (1997) 235-243.
34. L. J. Kricka (ed.), Nonisotopic Probing, Blotting, and Sequencing, Academic Press, New York, 2nd edn., 1995.
35. B. A. Ridley, F. E. Grahek, J. G. Walega, A small, high sensitivity, medium response ozone detector suitable for measurements from light aircraft, J. Atmos. Oceanic Tech., 9 (1992) 142-148.
36. B. A. Ridley and F. E. Grahek, A Small, Low Flow, High Sensitivity Reaction Vessel for NO Chemiluminescence Detectors, J. Atmos. Oceanic Tech., 7 (1990) 307-311.
37. M. Stigbrand, A. Karlsson, and K. Irgum, Direct and selective determination of atmospheric gaseous hydrogen peroxide by diffusion scrubber and 1,1'-oxalyldiimidazole chemiluminescence, Anal. Chem., 68 (1996) 3945-3950.
38. S. Toby, P. A. Astheimer, and F. S. Toby. Chemiluminescence in the gas phase reaction between tetrakis(dimethylamino)ethylene and oxygen, J. Photochem Photobiol. A: Chem., 67 (1992) 1-12.
39. N. I. Butkovskaya, A. A. Muravyov, D. W. Setser, Infrared chemiluminescence for the NO + HCO reaction: Observation of the 2 n1- n1 hot band of HNO, Chem. Phys. Lett., 266 (1997) 223-226.
40. D. A. Stiles, A. C. Calokerinos, and A. Townshend, Flame Chemiluminescence Analysis by Molecular Emission Cavity Detection, Wiley, Chichester, 1994.
41. K. Dehe and H. Heydtmann, 1996, HF Infrared Chemiluminescence in the Reactions of Fluorine Atoms with Cis-Butene-2, Trans-Butene and 2,3-d2-Butene-2, Ber. Bunsenges. Phys. Chem., 100 (1996) 1226-1230.
42. J. K. Nelson, Ph.D. Dissertation, University of Colorado, Boulder, 1984.
43. J. K. Nelson, R. H. Getty, and J. W. Birks, Fluorine Induced Chemiluminescence Detector for Reduced Sulfur Compounds, Anal. Chem., 55 (1983) 1767-1770.
44. R. H. Getty and J. W. Birks, A chemiluminescence detector for gas chromatography with selectivity for iodine, Anal. Lett., 12(1979) 469-476.
45. P. L. Burrow and J. W. Birks, Flow tube kinetics investigation of the mechanism of detection in the sulfur chemiluminescence detector, Anal. Chem., 69 (1997) 1299-1306.
46. R. J. Glinski, J. N. Getty, and J. W. Birks, Phosphorescence spectra of thioformaldehyde and thioformaldehyde-d2 by chemiluminescence: identification of the 411 band, Chem. Phys. Lett., 117(1985) 359-364.
47. R. J. Glinski, E. A. Mishalanie, J. W. Birks, Molecular emission spectra in the visible and near ir produced in the chemiluminescence reactions of molecular fluorine with organosulfur compounds, J. Photochem., 37 (1987) 217-231.
48. A. A. Turnipseed and J. W. Birks, Kinetics of the reaction of molecular fluorine with dimethyl sulfide, J. Phys. Chem., 95(1991) 6569-6574.
49. R. J. Glinski, E. A. Mishalanie, and J. W. Birks, Selenoformaldehye phosphorescence observed in the reaction of molecular fluorine with dimethyl diselenide, J. Am. Chem. Soc., 108 (1986) 531-532.
50. T. G. Chasteen, G. M. Silver, J. W. Birks, and R. Fall, Fluorine-induced chemiluminescence detection of biologically methylated tellurium, selenium, and sulfur compounds, Chromatographia, 30 (1990) 181-185.
51. V. Stalder, N. Bernard, K. W. Hanselmann, R. Bachofen, and T. G. Chasteen, A method of repeated sampling of static headspace above anaerobic bacterial cultures with fluorine-induced chemiluminescence detection, Anal.Chim. Acta, 303 (1995) 91-97.
52. V. Van Fleet-Stalder, H. Gürleyük, R. Bachofen, and T.G. Chasteen, Effects of the variation of growth conditions on the productionof methyl selenides in cultures of Rhodobacter sphaeroides 2.4.1amended with selenium oxyanions, Appl. Indust. Microbiol.Biotech., in press.
53. T. G. Chasteen, R. Fall, J. W. Birks, H. R. Martin, and R. J. Glinski, Fluorine-induced chemiluminescence detection of phosphine, alkyl phosphines, and monophosphinate esters,Chromatographia,31 (1991) 342-346.
54. H. Gürleyük, V. Van Fleet-Stalder, and T. G. Chasteen, Confirmation of the biomethylation of antimony compounds, Appl. Organomet. Chem.,11 (1997) 471-483.
55. F. Challenger, Biological methylation. Chem. Rev. 36 (1945) 315-361.
56. A. Krief, W. Dumont, J.-N. Denis, G. Evrard, and B. Norberg, Synthesis of selenone: a comparative study, J. Chem. Soc. Commun. (1985) 569-570.
57. R. Yu, J.P. Coffman, V. Van Fleet-Stalder, and T.G. Chasteen, Toxicity of oxyanions of selenium and of a proposed bioremediation intermediate, dimethyl selenone, Environ. Toxicol. Chem., 16 (1997) 140-145.
58. W. R. Sistrom, A requirement for sodium in the growth of Rhodo-pseudomonas sphaeroides. J. Gen. Microbiol., 22 (1960) 778-785.
59. L. Zhang and T. G. Chasteen, Amending cultures of selenium resistant bacteria with dimethyl selenone, Appl. Organomet. Chem., 8 (1994) 501-508.
60. L. H. Henrich, Detector and Data handling, in R. L. Grob (ed.), Modern Practice of Gas Chromatography, Wiley, New York, 3rd edn., 1976.
61. A. J. C. Nicholson, Decomposition reactions in the flame ionization detector, Chem. Soc. Faraday Trans. 1, 78 (1982) 2183-2194.
62. M. Moore M and S. Kaplan, Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class proteobacteria: Characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J. Bacteriol., 174 (1992) 1505-1514.
63. S. L. McCarty, T. G. Chasteen, M. Marshall, R. Fall, and R. Bachofen, Phototrophic bacteria produce volatile, methylated sulfur and selenium compounds, FEMS Microbiol. Letters, 112 (1993) 93-98.
64. D. C. Reamer and W. H. Zoller, Selenium biomethylation products from soil and sewage sludge. Science, 208 (1980) 500-502.
65. J. W. Doran, Microorganisms and the biological cycling of selenium. Adv. Microb. Ecol., 6 (1982) 1-32.
66. T. G. Chasteen, Confusion between dimethyl selenenyl sulfide and dimethyl selenone released by bacteria, Appl. Organomet. Chem., 7 (1993) 335-342.
67. D. C. Brune, Sulfur oxidation by phototrophic bacteria, Biochim. Biophys. Acta, 975(1989) 189-221.